Õpilased saavad küll teoorias kõigist teemadest põhilise, kuid pole piisavalt tunde, et seostada neid teadmisi igapäevaeluga. Nii jäävadki eksponentvõrrandid ning logaritmid nende jaoks arusaamatuks sümbolijadaks, mitte aga numbriliste seoste leidmise võtmeks.
Veelgi suurem probleem on see, et gümnaasiumi riigieksam loetakse sooritatuks ka juhul, kui õpilane saab 100st võimalikust vaid 1 punkti. See oleks sama hea, kui liikluses osaleksid sõidukijuhid, kes on omandanud liiklusreegleid ja praktilisi sõiduoskusi vaid ühe protsendi ulatuses. Sellisel juhul poleks ju kohustuslikul eksamil sõidukijuhiks saamisel mingit tähtsust. Niisamuti ei ole gümnaasiumi lõpetamiselmingit mõtet ka kohustuslikul, üheprotsendise lävendiga matemaatika riigieksamil.
1-punktine lävend lõhub õpimotivatsiooni
1-punktine olematu lävend ei motiveeri ainest aru saama. Kuna gümnaasiumi lõpuhinne on kõikide klassikursuste koondhinne, siis loobuvad mitmed gümnasistid 12. klassis matemaatika õppimisest. Arvatakse, et paar punkti nad ikka eksamil saavad ning kui kõrgkoolis valitud erialale sisseastumiseks matemaatikaeksami tulemust ei arvestata, siis langebki õpitahe miinusesse. Sisuliselt pakutakse nii õpilasele ahvatlev võimalus mitte pingutada gümnaasiumi lõpetamisest sõltumata.
Seega tuleks 1-punktine lävend sellisel kujul kaotada. 20 punkti saamine 100st võimalikust ei tohiks keskharidust taotleval inimesel olla ületamatu saavutus ning mõne aasta tagune eksamipraktika näitab, et ega ei olegi. Gümnaasiumi lõpetamisel peaks aga olema üks matemaatika eksam, mille sisu on koostatud selliselt, et kõigile on jõukohaseid ülesandeid. Näiteks 50 punkti oleks võimalik saada tänase kitsa, 50 punkti aga laia matemaatika ülesannete lahendamise eest.
Praegusel kujul ehk 1-punktise lävendiga kohustuslik matemaatika riigieksam või õigemini kaks eraldi eksamit kitsas ja laias ainekäsitluses end ei õigusta. Pigem kahjustab selline eksamikorraldus matemaatika mainet, kui näiliselt nõutakse 100st võimalikust vaid 1 punkti jagu teadmisi.